If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+25x+36=0
a = 3; b = 25; c = +36;
Δ = b2-4ac
Δ = 252-4·3·36
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{193}}{2*3}=\frac{-25-\sqrt{193}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{193}}{2*3}=\frac{-25+\sqrt{193}}{6} $
| 5(8x)= | | 0.6x=35 | | g÷7=14 | | (5x−1)3=3x+1 | | 5x−13=3x+1 | | 62-2x=36 | | 6z+8=6(z+2)-4= | | 30=6(x+1) | | 9x+2.3x+2=243 | | (3x-5)^2+10=6x | | 8/6=1/3x | | +8/6=1/3x | | -1.5x+1=x | | 1.5x+1=x | | r^2-12r+40=0 | | 7x2−3 x=0 | | –2s+3=5s+24 | | 7–12c=14c–7 | | 5x-4+2x=3x | | 3/x=18/5x | | 6x3+-13x2+-40x+75=0 | | 7-4(4a+1)=8+a | | 2x-3=+3+5-6x | | 2(4x+5)-3x(x-6)=8 | | 41/2x=45 | | 2e-1=11 | | -7x-14=2x13 | | d-8=27 | | -7u+9=-3(u+1) | | 27+1.5x=72 | | 8x+6=-4x2 | | 1/2*n+7=(n+14)/2 |